Acinetobacter
[created by Paul Young 02/10/07]

- General
 - Levels of environmental contamination with A. baumannii correlate with patient colonization and infection. This organism is very hardly and survives dessication.

- Acinetobacter are non-lactose fermenting, Gram-negative cocobacilli that are strictly aerobic and non-motile.

- Acinetobacter baumannii is the most important species associated with infections and nosocomial outbreaks.

- Levels of environmental contamination with A. baumannii correlate with patient colonization and infection. This organism is very hardly and survives dessication.

- Transmission
 - Dissemination of Acinetobacter in the environment can be a major problem.
 - It has been recovered from respiratory equipment, bed linen, tables, patients' charts, sink traps, the floor and atmosphere, especially in the vicinity of an infected or colonized patient.
 - Furthermore, Acinetobacter is able to persist in the environment for several days, even in dry conditions, on particles and dust.
 - Some strains are tolerant to soaps and disinfectants.
 - The nosocomial spread of Acinetobacter is most often attributed to exogenous contamination from equipment, environmental surfaces and the hands of hospital personnel rather than endogenous infection.

- Colonisation
 - Acinetobacters form part of the normal bacterial flora of the skin, particularly in moist regions such as the axillae, groin and toe webs.
 - Up to 25% of normal individuals carry cutaneous Acinetobacter, and it is the most common gram-negative organism isolated from the skin of hospital personnel.

- Infections
 - It causes a wide range of nosocomial infections including ventilator-associated pneumonia, bacteraemia, urinary tract infections, skin and wound infections and meningitis.

- Resistance
 - Acinetobacter isolates are typically even more resistant than Pseudomonas spp. to most antimicrobials, including broad-spectrum cephalosporins, penicillins, fluoroquinolones and aminoglycosides.

- Known resistance mechanisms include plasmid-mediated beta-lactamases, which are also frequently associated with resistance to fluoroquinolones and aminoglycosides.

- Chromosomal cephalosporinases may be responsible for the high prevalence of ceftazidime resistance. However, the relationship between observed antibiotic resistance patterns in vitro and the presence of these beta-lactamases remains unclear. It is suggested that altered penicillin-binding proteins and membrane impermeability may be the major cause of high level resistance to beta-lactams, including imipenem.

- Treatment
 - Carbapenems are currently considered the antimicrobials of choice, although epidemic outbreaks and endemic situations involving carbapenem-resistant Acinetobacter species have been described.

- Colistin, polymyxin B & ampicillin-sulbactam have all been described in treatment of carbapenem-resistant strains.