trauma series

- CXR identifies haemothorax, pneumothorax and pulmonary contusion
- AP pelvis can confirm presence of significant pelvic fracture
- lateral c-spine can identify non-survivable neck injury

FAST:

- used to identify free fluid in the peritoneal cavity
- FAST has a sensitivity of 70-95%
- involves directing to ultrasound probe in four regions:
- (i) the subxipoid location to determine whether there is fluid in the pericardial space & to make a rough assessment of contractility & filling state
- (ii) the right upper quadrant
- (iii) the splenorenal recess
- (iv) the pelvis
- problems with FAST:
- (i) operator dependent
- (ii) false negative rate in children is high
- (iii) technically more difficult with obesity & sc empysema

DPI

- has an accuracy of 98% for detection of haemoperitoneum but does not determine source
- generally performed in patients too unstable for CT
- involves performing a minilaparotomy with placement of a lavage catheter into the periotoneal cavity directed towards the pelvis
- the return of gross blood is a positive result
- if DPL is grossly negative then 1L of warmed saline is instilled into the the abdominal cavity & then drained back into the intravenous fluid bag by gravity. The effluent lavage is sent to the laboratory for analysis.
- laboratory criteria for a positive DPL in blunt trauma are:
- (i) >100000 RBCs/mm3
- (ii) >500 WBC/mm3
- (iii) presence of food particles
- (iv) presence of bile
- (v) presence of bacteria
- problems with DPL:
- (i) an invasive procedure
- (ii) 1/4 of patients with a positive DPL will have a non-therapeutic laparotomy
- (iii) 5% false negative rate with retroperitoneal, hollow viscus or diaphragm injuries

C i abdo/peivis:

- is the diagnostic modality of choice for haemodynamically stable patients
- the major reason not to obtain a CT scan is haemodynamic instability
- allows haemoperitoneum & its source to be identified & allows specific injuries to be graded
- CT also permits evaluation of retroperitoneal structures including the kidneys, major blood vessels & bony pelvis
- the majority of blunt solid organ injuries are now managed non-operatively in trauma centres; however, a
- blush of intravenous contrast agent indicates active extravasation from a bleeding vessel and is strong predictor of failure of non-operative management
- problems with CT scanning are:
- (i) the need to transfer the patient to radiology
- (ii) the time associated with transfer and scanning
- (iii) risks associated with intravenous contrast agents
- (iv) the fact hollow viscus, diaphragmatic & pancreatic injuries are frequently missed on initial scanning

30% of patients with lumbar Chance fracture have associated bowel or mesenteric injuries

Clinical

Initial aspiration of >10 ml frank blood

Egress of lavage fluid via chest tube or urinary catheter

Bile or vegetable material in lavage fluid

Laboratory

	Blunt injury	Penetrating injury
Red cells		
Definite	$>100 \times 10^{9}/1$	>20 × 10 ⁹ /l
Indeterminate	50-100 × 109/1	$5-20 \times 10^9/I$
White cells	>0.5 × 10 ⁹ /l	$0.5 \times 10^{9}/I$
Amylase	>20 IU/I	>20 IU/I
Alkaline phosphatase	>10 IU/I	>10 IU/I

criteria for positive DPL

imaging and

laboratory

studies

abdominal trauma consists of blunt and penetrating trauma

Penetrating abdominal trauma:

- most commonly injured organs with stab wounds are small intestine, liver and colon
- only one third of abdominal stab wounds penetrate the peritoneum & only 50% of

these require surgical intervention

- 85% of abdominal wall gun shot wounds penetrate the peritoneum $\&\,95\%$ of these

require a surgical procedure for correction

Blunt abdominal traum

definition

initial

resuscitation &

comprehensive

assessment

- assessment

[created by Paul

oung 28/10/07]

assessment

- spleen and liver are the most commonly injured organs; small and large intestines are the next most commonly injured

Primary survey:

- (i) Airway(ability of air to pass unobstructed to the lungs):
- critical findings include:
- obstruction of the airway due to direct injury, oedema, foreign body or inability
- to protect the airway because of depressed level of consciousnesss
- key treatment is:
- establishment of airway
- (ii) Breathing (ability to ventilate and oxygenate):

key clinical findings are:

- absence of spontaneous ventilation, absent or asymmetrical breath sounds, dyspnoea
- hyperresonance, dullness, gross chest wall instability or defects that compromise ventilation
- key conditions to identify are:
- pneumothorax, endotracheal tube malposition, tension
- pneumothorax, haemothorax, sucking chest wounds, flail chest
- key treatment is:
- chest tube
- (iii) Circulation:
- key clinical findings are:
- collapsed or distended neck veins, signs or tamponade, external sites of haemorrhage
- key conditions identified are:
- hypovolaemia, cardiac tamponade, external haemorrhage

key treatment is:

- iv access, fluid resuscitation, compression of sites of bleeding
- (iv) Disability:
- key clinical conditions are:
- decreased level of consciousness, pupillary assymetry, gross weakness
- key conditions identified are:
- serious head and spinal cord injury
- key treatment is:
- definitive airway if indicated, emergency treatment of raised icp
- (v) Exposure and control of immediate environment:
- expose patient and prevent hypothermia

Other procedures:

several monitoring and diagnostic adjuncts occur in concert with the primary survey:

- (i) ECG and ventilatory monitoring and continous pulse oximetry
- (ii) decompress stomach with NG or OG tube once airway is secured
- $\hbox{\it (iii) insert a foley cather during resuscitation phase (foley catheter placement is contraindicated } \\$
- if urethral injury is evident as identified by blood at the meatus, ecchymosis or scrotum or labium majora or high riding prostate retrograde urethrogram is required for these patients)

Resuscitation phas

- continues throughout primary and secondary survey and until treatments are complete
- fluids are required to sustain intravascular volume, tissue and organ perfusion and urine output
- administer blood for hypovolaemia that is unresponsive to crystalloid boluses
- end points are normal vital signs, absence of blood loss, adequate urine output and no evidence of end organ dysfunction; blood lactate and base deficit on an ABG may be helpful in patients who are severely injured

Secondary survey of abdominal trauma:

(i) inspection:

- examine for the presence of external signs of injury noting patterns of abrasion and/or ecchymotic areas
- lap belt bruising is positively correlated with rupture of the small intestine and increased incidence of other intraabdominal injury (20-30% of patients with lap-belt marks have associated mesenteric or intestinal injuries)
- bradycardia may indicate free intraperitoneal blood
- Cullen sign (periumbillical ecchymosis) may indicate retroperitoneal

haemorrhage; however, this usually takes hours to develop

- flank bruising and swelling may raise suspicion for retroperitoneal injury
- inspect genitals and peritoneum
- (ii) palpation:
- fullness may indicate haemorrhage
- crepitation of lower rib cage may indicate hepatic or splenic injury
- rectal and vaginal examination identify potential bleeding and injury
- signs of peritonitis soon after injury suggest leakage of intestinal contents; peritonitis due to intra-abdominal haemorrhage may take several hours to develop
- ongoing haemorrhage is the most likely cause of persistent or recurrent haemodynamic instability initial goal is not to diagnose specific abdominal organ injury but rather to determine wheter there are
- signs & symptoms that indicate a need for immediate laparotomy