Delta
Delta anion gap—delta ΔHCO$_3^-$
- The difference between the rise in AG and the fall in bicarbonate

Lactate
Bedside lactate (lactate oxidase method) – laboratory lactate (lactate dehydrogenase method)

Oxygen saturation
Spo$_2$ (pulse oximetry) — co-oximetry SaO$_2$

Anion
$\text{Na}^+ - (\text{HCO}_3^- + \text{Cl}^-)$
Normal range: 6–15 mmol/L

- Assists the clarification of the aetiology of metabolic acidosis—increased versus non-anion gap (see causes of metabolic acidosis)
- A reduced anion gap may be seen with:
 - hypermagnesaemia
 - hypercalcaemia
 - lithium toxicity
 - excess immunoglobulins (multiple myeloma, Intragram infusion)
 - hypoalbuminaemia

Anion gap (AG) corrected for hypoalbuminaemia
$AG_{L} = AG + 0.25 \times (44 - \text{observed albumin in g/L})$

- More accurate estimate of AG in patients with low albumin—most critically ill patients

Osmolar
Measured osmolality* — calculated osmolality*

- Calculated osmolality*
 $= 2(\text{Na} + \text{K}) + \text{urea}^* + \text{glucose}^*$

- Normal: <10 mmol/L
- Measured osmolality is calculated via the depression in the freezing point of sample

- Increased osmolar gap seen with:
 - alcohols
 - mannitol
 - glycerine (e.g. TURP syndrome)
 - radiocontrast media
 - sorbitol
 - maltose (e.g. Intragram—immunoglobulin)