Acid-Base Disorders Worksheet

Adapted from Joshua Steinberg MD

Step #1: Gather the necessary data (Na⁺, Cl⁻, HCO3⁻, pH, pCO₂)

Preferably, all obtained from the same blood sample.

Step #2: Look at the pH.

If pH >7.4 \rightarrow the patient has a primary alkalosis \rightarrow proceed to Step 3a If pH < 7.4 \rightarrow the patient has a primary acidosis \rightarrow proceed to Step 3b

Patient has primary: acidosis | alkalosis

Step #3: Look at the pCO_2 .

3a: If pCO_2 is >40 \rightarrow patient's alkalosis is metabolic;

If pCO_2 is $<40 \rightarrow patient's alkalosis is respiratory$

3b: If pCO_2 is >40 \rightarrow patient's acidosis is respiratory; If pCO_2 is <40 \rightarrow patient's acidosis is metabolic

Primary process is: respiratory | metabolic

Step #4: Look for disorders revealed by failure of compensation.

- If 1° process is metabolic alkalosis \rightarrow pCO₂ should be >40 but <55*
 - ${}^*\, \text{There are several metabolic alkalosis PCO}_2\, \text{prediction formulas, but fraught with clinical inaccuracy/unreliability}$
- If 1° process is metabolic acidosis \rightarrow calc. predicted pCO₂ = (1.5 x HCO₃) + 8 +/- 2 In either case above:
 - If actual pCO2 is too high → there is additional respiratory acidosis
 - If actual pCO2 is too low → there is additional respiratory alkalosis
- If 1° process is respiratory \rightarrow skip to steps 5 & 6 (where further metabolic disorders revealed)

Additional disorder: resp. resp.

acidosis alkalosis

-or-

no additional disorder

Step #5: Check if the patient has a significant anion gap (>12-18). (AG = Na-CI-HCO₃) If AG is significantly elevated → the patient has an anion gap metabolic acidosis in addition to (or in confirmation of) whatever Steps 2 through 4 yielded

Patient
has | does not have:
AG met. acidosis

Step #6: Calculate the corrected bicarb. (Pt's gap – 12 + pt's serum bicarb)

In addition to whatever disorders Steps 1 through 5 yielded,

- If corrected bicarb >30 → the patient has an underlying metabolic *alkalosis*;
- If corrected bicarb <23 → the patient has an underlying non-AG metabolic *acidosis* acidosis

Patient has underlying metabolic:

non-AG al

alkalosis

Step #7: Make the diagnosis(es) using the differentials below and knowledge of the patient

				
Anion Gap	Non-Anion Gap	Acute Respiratory	Metabolic	Respiratory
Metabolic Acidosis	Metabolic Acidosis	Acidosis	Alkalosis	Alkalosis
"MUDPILERS"	"HARDUPS"	anything that causes	"CLEVER PD"	anything that causes
M ethanol	H yperalimentation	hypoventilation, i.e.:	Contraction	hyperventilation, i.e.:
U remia	A cetazolamide	CNS depression (drugs/CVA)	Licorice*	CNS disease
D KA/Alcoholic KA	Renal tubular acidosis	Airway obstruction	Endo: Conn's/Cushing's/	Нурохіа
P aradehyde	Diarrhea	Pneumonia	Bartter's)*	A nxiety
Isoniazid	U retero-Pelvic shunt	Pulmonary edema	Vomiting, NG suction	Mechanical ventilators
L actic acidosis	Post-hypocapnia	Hemo/Pneumothorax	Excess alkali*	Progesterone
EtOH/Ethylene glycol	S pironolactone	Myopathy	Refeeding alkalosis*	Salicylates/Sepsis
Rhabdo/Renal failure			Post-hypercapnia	
Salicylates		(Chronic respiratory acidosis	Diuretics*	
		is caused by COPD and		
		restrictive lung disease)	*assoc w/high urine CI levels	

Step #8: Fix it!