Post-cardiac arrest syndrome
Reviewed and revised 15 November 2016
OVERVIEW
aka post-resuscitation syndrome
- occurs after return of spontaneous circulation (ROSC) following cardiorespiratory arrest and involves multiple systems
- Reflects a state of whole-body ischaemia and subsequent reperfusion
- Often super-imposed on the underlying condition, which caused the cardiac arrest and pre-existing comorbidities, and other complications of resuscitation
- Severity depends on the duration and cause of cardiac arrest
Mortality and morbidity following cardiac arrest
- Early mortality due to cardiovascular instability
- Late mortality and morbidity occurs from brain injury (the most common cause of death after ROSC), multi-organ failure and sepsis
MECHANISM
Postcardiac arrest syndrome was once thought to be largely due to production of free radicals, although the pathophysiology is more complex
- Hypoperfusion and ischaemia cause a cascade of events
- disruption of homeostasis
- free radical formation
- protease activation
- a SIRS response resembling severe sepsis
- The disruption may continue for hours or days
- Hypothermia may slow down this cascade
MAJOR MANIFESTATIONS
- Postcardiac arrest brain injury
- Disruption on both a micro- and macro- circulatory levels may result in either ischaemia or hyperaemia
- Postcardiac arrest myocardial dysfunction
- Although the heart initially becomes hyperkinetic, likely due to circulating catecholamines, global hypokinesis often follows
- Usually resolves within 72 hours
- Systemic ischaemia/reperfusion response
- The response of the body is similar to the septic shock with activation of the immune and complement systems, and release of inflammatory cytokines and a wide range of cellular responses
- Persistent precipitating pathology
- The cause of the arrest may continue to impact physiological parameters
CONTRIBUTING FACTORS
Post cardiac arrest brain injury
- Impaired cerebrovascular autoregulation
- Cerebral oedema
- Neurodegeneration
Post cardiac arrest myocardial dysfunction
- Myocardial stunning – global hypokinesis
- Poor cardiac output
- Acute coronary syndromes
Systemic ischaemia / reperfusion response
- Systemic inflammatory response syndrome (SIRS)
- Poor vasoregulation
- Microcirculatory failure
- Activation of coagulation cascade
- Adrenal suppression
- Poor tissue oxygen deliver and utilization
- Susceptibility to infection
Persistent precipitating pathology
- Cardiovascular disease (e.g. myocardial ischemia, cardiomyopathy)
- Pulmonary disease (e.g. pulmonary embolus, asthma)
- CNS disease (e.g. stroke, subarachnoid hemorrhage)
- Poisoning
- Infection / Sepsis
- Hypovolaemia
Other complications of resuscitation such as injuries (e.g. rib fractures, sternal fractures), medication adverse effects and complications of invasive lines and monitoring.
References and Links
LITFL
- CCC — Prognosis After Cardiac Arrest
- CCC — Post-cardiac arrest care
- CCC — Targeted temperature management (TTM) after cardiac arrest
Journal articles
- Mongardon N, Dumas F, Ricome S, Grimaldi D, Hissem T, Pène F, Cariou A. Postcardiac arrest syndrome: from immediate resuscitation to long-term outcome. Ann Intensive Care. 2011 Nov 3;1(1):45. PMC3223497.
- Neumar RW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation. Circulation. 2008 Dec 2;118(23):2452-83. PMID: 18948368. [Free Full Text]
- Stub D, Bernard S, Duffy SJ, Kaye DM. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation. 2011 Apr 5;123(13):1428-35. doi: 10.1161/CIRCULATIONAHA.110.988725. PMID: 21464058. [Free Full Text]
- Zia A, Kern KB. Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care. 2011 Jun;17(3):241-6. PMID: 21378558.
FOAM and web resources
- EMCrit — Post-Arrest Hypothermia Protocols and Resources
- FET — Post Arrest Care – It’s More than Hypothermia by Michael Winters (2013)
- FET — Post Cardiac Arrest Management by Michael Kuiper (2009)
[cite]
Critical Care
Compendium
Chris is an Intensivist and ECMO specialist at The Alfred ICU, where he is Deputy Director (Education). He is a Clinical Adjunct Associate Professor at Monash University, the Lead for the Clinician Educator Incubator programme, and a CICM First Part Examiner.
He is an internationally recognised Clinician Educator with a passion for helping clinicians learn and for improving the clinical performance of individuals and collectives. He was one of the founders of the FOAM movement (Free Open-Access Medical education) has been recognised for his contributions to education with awards from ANZICS, ANZAHPE, and ACEM.
His one great achievement is being the father of three amazing children.
On Bluesky, he is @precordialthump.bsky.social and on the site that Elon has screwed up, he is @precordialthump.
| INTENSIVE | RAGE | Resuscitology | SMACC